
Package: codep (via r-universe)
September 12, 2024

Type Package

Version 1.2-3

Date 2024-04-15

Encoding UTF-8

Title Multiscale Codependence Analysis

Author Guillaume Guenard and Pierre Legendre, Bertrand Pages

Maintainer Guillaume Guenard <guillaume.guenard@gmail.com>

Description Computation of Multiscale Codependence Analysis and
spatial eigenvector maps.

Depends R (>= 3.5.0)

Imports grDevices, graphics, stats, parallel

License GPL-3

LazyLoad yes

NeedsCompilation yes

RoxygenNote 7.2.3

Repository https://guenardg.r-universe.dev

RemoteUrl https://github.com/guenardg/codep

RemoteRef HEAD

RemoteSha 215f84947ca78b30c71000144dcf8beea82c4361

Contents
codep-package . 2
cdp-class . 4
cthreshold . 7
Doubs . 8
eigenmap . 9
eigenmap-class . 13
Euclid . 14
geodesics . 16

1

2 codep-package

LGDat . 18
LGTransforms . 19
MCA . 22
minpermute . 28
mite . 29
product-distribution . 30
salmon . 32
weighting-functions . 33

Index 37

codep-package Multiscale Codependence Analysis

Description

Computation of Multiscale Codependence Analysis and spatial eigenvector maps. Multiscale Code-
pendence Analysis (MCA) consists in assessing the coherence of pairs of variables in space (or
time) using the product of their correlation coefficients with series of spatial (or temporal) eigen-
functions. That product, which is positive or negative when variables display similar or opposing
trends, respectively, is called a codependence coefficient.

The eigenfunctions used in the calculation are obtained in three steps: 1) a distance matrix is calcu-
lated from the locations of samples in space (or the sampling organisation through time). 2) From
that distance matrix, a matrix of Moran spatial weights is obtained; this is the same matrix as used
to calculate Moran’s autocorrelation index, hence the name. And 3) the spatial weight matrix is
eigenvalue-decomposed after centring the rows and columns of the spatial weight matrix.

The statistical significance of codependence coefficients is tested using parametric or permutational
testing of a tau statistic. The ‘tau‘ statistic is the product of the Student’s ‘t‘ statistics obtained
from comparison of the two variables with a given eigenfunction. The ‘tau‘ statistic can take either
positive or negative values, thereby allowing one to perform one-tailed or two-tailed testing. For
multiple response variables, testing is performed using the ‘phi‘ statistic instead of ‘tau‘. That
statistic follows the distribution of the product of two Fisher-Snedocor F statistics (see product-
distribution for details).

Details

Function MCA performs Multiscale Codependence Analysis (MCA). Functions test.cdp and permute.cdp
handle parametric or permutation testing of the codependence coefficients, respectively.

Methods are provided to print and plot cdp-class objects (print.cdp and plot.cdp, respectively)
as well as summary (summary.cdp), fitted values (fitted.cdp), residuals (residuals.cdp), and
for making predictions (predict.cdp).

Function eigenmap calculates spatial eigenvector maps following the approach outlined in Dray
et al. (2006), and which are necessary to calculate MCA. It returns a eigenmap-class object. The
package also features methods to print (print.eigenmap) and plot (plot.eigenmap) these ob-
jects. Function eigenmap.score can be used to make predictions for spatial models built from the
eigenfunctions of eigenmap using distances between one or more target locations and the sampled
locations for which the spatial eigenvector map was built.

codep-package 3

The package also features an exemplary dataset salmon containing 76 sampling site positions along
a 1520 m river segment. It also contains functions cthreshold and minpermute, which compute
the testwise type I error rate threshold corresponding to a given familywise threshold and the mini-
mal number of permutations needed for testing Multiscale Codependence Analysis given the alpha
threshold, respectively.

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

See Also

Legendre, P. and Legendre, L. 2012. Numerical Ecology, 3rd English edition. Elsevier Science
B.V., Amsterdam, The Neatherlands.

Examples

data(mite)
emap <- eigenmap(x = mite.geo, weighting = wf.RBF, wpar = 0.1)
emap

Organize the environmental variables
mca0 <- MCA(Y = log1p(mite.species), X = mite.env, emobj = emap)
mca0_partest <- test.cdp(mca0, response.tests = FALSE)
summary(mca0_partest)
plot(mca0_partest, las = 2, lwd = 2)
plot(mca0_partest, col = rainbow(1200)[1L:1000], las = 3, lwd = 4,

main = "Codependence diagram", col.signif = "white")

rng <- list(x = seq(min(mite.geo[,"x"]) - 0.1, max(mite.geo[,"x"]) + 0.1, 0.05),
y = seq(min(mite.geo[,"y"]) - 0.1, max(mite.geo[,"y"]) + 0.1, 0.05))

grid <- cbind(x = rep(rng[["x"]], length(rng[["y"]])),
y = rep(rng[["y"]], each = length(rng[["x"]])))

newdists <- matrix(NA, nrow(grid), nrow(mite.geo))
for(i in 1L:nrow(grid)) {

newdists[i,] <- ((mite.geo[,"x"] - grid[i,"x"])^2 +

4 cdp-class

(mite.geo[,"y"] - grid[i,"y"])^2)^0.5
}

spmeans <- colMeans(mite.species)
pca0 <- svd(log1p(mite.species) - rep(spmeans, each = nrow(mite.species)))

prd0 <- predict(
mca0_partest,
newdata = list(target = eigenmap.score(emap, newdists))

)
Uprd0 <- (prd0 - rep(spmeans, each = nrow(prd0))) %*% pca0$v %*%

diag(pca0$d^-1)

Printing the response variable
prmat <- Uprd0[,1L]
dim(prmat) <- c(length(rng$x), length(rng$y))
zlim <- c(min(min(prmat), min(pca0$u[,1L])), max(max(prmat), max(pca0$u[,1L])))
image(z = prmat, x = rng$x, y = rng$y, asp = 1, zlim = zlim,

col = rainbow(1200L)[1L:1000], ylab = "y", xlab = "x")
points(

x = mite.geo[,"x"], y = mite.geo[,"y"], pch = 21,
bg = rainbow(1200L)[round(1+(999*(pca0$u[,1L] - zlim[1L])/

(zlim[2L] - zlim[1L])),0)]
)

cdp-class Class and Methods for Multiscale Codependence Analysis (MCA)

Description

A class and set of methods to handle the results of Multiscale Codependence Analysis.

Usage

S3 method for class 'cdp'
print(x, ...)

S3 method for class 'cdp'
plot(x, col, col.signif = 2, main = "", ...)

S3 method for class 'cdp'
summary(object, ...)

S3 method for class 'cdp'
fitted(object, selection, components = FALSE, ...)

S3 method for class 'cdp'
residuals(object, selection, ...)

cdp-class 5

S3 method for class 'cdp'
predict(object, selection, newdata, components = FALSE, ...)

Arguments

x A cdp-class object.

... Further parameters to be passed to other functions or methods.

col A vector of color values to be used for plotting the multivariate codependence
coefficients.

col.signif Color of the frame used to mark the statistically significant codependence coef-
ficients.

main Text for the main title of the plot.

object A cdp-class object.

selection A numeric vector of indices or character vector variable names to test or force-
use. Mandatory if object is untested.

components A boolean specifying whether the components of fitted or predicted values as-
sociated with single eigenfunctions in the map should be returned.

newdata A list with elements $X, $meanY, and $target that contain the information needed
to make predictions (see details).

Format

cdp-class objects contain:

data A list with two elements: the first being a copy of the response (‘Y‘) and the second being a
copy of the explanatory variables (‘X‘). This is the variables that were given to MCA.

emobj The eigenmap-class object that was given to MCA.

UpYXcb A list with five elements: the first (‘UpY‘) is a matrix of the cross-products of struc-
turing variable (‘U‘) and the response variable ‘Y‘, the second (‘UpX‘) is a matrix of the
cross-product of the structuring variable and the explanatory variables (‘X‘), the third (‘C‘)
is a 3-dimensional array of the codependence coefficients, the fourth (‘B‘) is a 3-dimensional
array of the coregression coefficients, and the fifth (‘CM‘) is a matrix of the multivariate code-
pendence coefficients.

test Results of statistical testing as performed by test.cdp or permute.cdp. NULL if no testing
was performed, such as when only MCA had been called. The results of statistical testing is a
list containing the following members:

$permute The number of randomized permutations used by permute.cdp for permutation
testing. 0 or FALSE for parametric testing obtained using test.cdp.

$significant The indices of codependence coefficient describing statistically significant code-
pendence between ‘Y‘ and ‘X‘, in decreasing order of magnitude.

$global The testing table (a 5-column matrix) with phi statistics, degrees-of-freedom, and
testwise and familywise probabilities of type I (alpha) error. It contains one line for each
statistically significant global coefficient (if any) in addition to test results for the first,
non-significant coefficient, on which the testing procedure stopped.

6 cdp-class

$response Tests of every single response variable (a 3-dimensional array), had such tests been
requested while calling the testing function, NULL otherwise.

$permutations Details about permutation testing not shown in ‘test$global‘ or ‘test$response‘.
NULL for parametric testing.

Details

The ‘fitted‘, ‘residuals‘, and ‘predict‘ methods return a matrix of fitted, residuals, or predicted val-
ues, respectively. The ‘fitted‘ and ‘predict‘ methods return a list a list when argument ‘component‘
is TRUE. The list contains the ‘fitted‘ or ‘predicted‘ values as a first element and an array ‘com-
ponents‘ as a second. That 3-dimensional array has one matrix for each statistically significant
codependence coefficient.

For making predictions, argument newdata may contain three elements: ‘$X‘, a matrix of new val-
ues of the explanatory variables, ‘$meanY‘, a vector of the predicted mean values of the responses,
and ‘$target‘, a matrix of target scores for arbitrary locations within the study area. When no ‘$X‘
is supplied, the descriptor given to MCA is recycled, while when no ‘$meanY‘ is supplied, the mean
values of the response variables given to MCA are used.

Finally, when element ‘$target‘ is omitted from argument newdata, predictions are made at the sites
were observations were done. When none of the above is provided, or if newdata is omitted when
calling the prediction method, the behaviour of the ‘predict‘ method is identical to that of the ‘fitted‘
method.

From version 0.7-1, cdp-class replaces the former class mca used by codep-package because the
standard package MASS also had S3 methods for a class named mca that were overwritten by those
of codep-package.

Functions

• print(cdp): Print method for cdp-class objects.

• plot(cdp): Plot method for cdp-class objects.

• summary(cdp): Summary method for cdp-class objects.

• fitted(cdp): Fitted method for cdp-class objects.

• residuals(cdp): Residuals method for cdp-class objects.

• predict(cdp): Predict method for cdp-class objects.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

cthreshold 7

cthreshold Familywise Type I Error Rate

Description

Function to calculate the testwise type I error rate threshold corresponding to a give familywise
threshold.

Usage

cthreshold(alpha, nbtest)

Arguments

alpha The familywise type I error threshold.

nbtest The number of tests performed.

Details

Type I error rate inflation occurs when a single hypothesis is tested indirectly using inferences about
two or more (i.e., a family of) sub-hypotheses. In such situation, the probability of type I error (i.e.,
the probability of incorrectly rejecting the null hypothesis) of the single, familywise, hypothesis is
higher than the lowest, testwise, probabilities. As a consequence, the rejection of null hypothesis
for one or more individual tests does not warrant that the correct decision (whether to reject the the
null hypothesis on a familywise basis) was taken properly. This function allows to obtain correct,
familywise, alpha thresholds in the context of multiple testing. It is base on the Sidak inegality.

Value

The threshold that have to be used for individual tests.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Sidak, Z. 1967. Rectangular Confidence Regions for Means of Multivariate Normal Distributions
J. Am. Stat. Assoc. 62: 626-633

Wright, P. S. 1992. Adjusted p-values for simultaneous inference. Biometrics 48: 1005-1013

See Also

Legendre, P. and Legendre, L. 1998. Numerical Ecology. Elsevier Science B.V., Amsterdam, The
Neatherlands. p. 18

8 Doubs

Examples

For a familywise threshold of 5% with 5 tests:
cthreshold(0.05, 5) ## The corrected threshold for each test is 0.01020622

Doubs The Doubs Fish Data

Description

Fish community composition of the Doubs River, France.

Usage

data(Doubs)

Format

Contains three matrices:

Doubs.fish The abundance of 27 fish species.

Doubs.env Nine environmental variables (all quantitative).

Doubs.geo Geographic information of the samples.

Details

Values in ‘Doubs.fish‘ are counts of individuals of each of 27 species observed in a set of 30 sites
located along the 453 km long Doubs River, France (see Verneaux 1973 for further details about
fishing methods and effort).

Doubs.env contains 11 quantitative variables, namely the slope (‘slo‘; 1/1000) and mean minimum
discharge (‘flo‘ m³/s) of the river, the pH of the water, its harness (Calcium concentration;
‘har‘; mg/L), phosphate (‘pho‘; mg/L), nitrate (‘nit‘; mg/L), and ammonium (‘amm‘; mg/L),
concentration as well as its dissolved oxygen (‘oxy‘; mg/L) and biological oxygen demand
(‘bdo‘; mg/L).

Doubs.geo contains geographical information. ‘Lon‘, the longitude and ‘Lat‘, the latitude of the
sample (degree) as well as ‘DFS‘, its distance from the source of the river (km) and ‘Alt‘,
altitude (m above see level).

Source

Verneaux, 1973

eigenmap 9

References

Verneaux J. 1973. - Cours d’eau de Franche-Comté (Massif du Jura). Recherches écologiques sur
le réseau hydrographique du Doubs. Essai de biotypologie. Thèse d’état, Besançon. 257 p.)

Verneaux, J.; Schmitt, V.; Verneaux, V. & Prouteau, C. 2003. Benthic insects and fish of the Doubs
River system: typological traits and the development of a species continuum in a theoretically
extrapolated watercourse. Hydrobiologia 490: 60-74

See Also

Borcard, D.; Gillet, F. & Legendre, P. 2011. Numerical Ecology with R. Springer, New-York, NY,
USA.

Examples

data(Doubs)
summary(Doubs.fish)
summary(Doubs.env)
summary(Doubs.geo)

eigenmap Spatial Eigenvector Maps

Description

Function to calculate spatial eigenvector maps of a set of locations in a space with an arbitrary
number of dimension.

Usage

eigenmap(
x,
alt.coord = NA,
weighting = wf.sqrd,
boundaries,
wpar,
tol = .Machine$double.eps^0.5

)

eigenmap.score(emap, target)

Arguments

x A set of coordinates defined in one (numeric vector) or many (a coordinate x
dimension matrix) dimensions or, alternatively, a distance matrix provided by
dist.

10 eigenmap

alt.coord Coordinates to be used when a distance matrix is provided as x. Used for plotting
purposes.

weighting The function to obtain the edge weighting matrix (see details).

boundaries When required by argument weighting, a two-element numeric vector contain-
ing the lower and upper threshold values used to obtain the connectivity matrix
(see weighting-functions).

wpar Shape parameter for argument weignting (optional).

tol The smallest absolute eigenvalue for a spatial eigenfunctions to be considered as
a suitable predictor. Default: .Machine$double.eps^0.5 (a machine-dependent
value).

emap An eigenmap-class object.

target A (generally rectangular) distance matrix between a set of target locations for
which spatially-explicit predictions are being made (rows), and the reference
locations given to function eigenmap (columns). See example 2.

Details

When function eigenmap is given coordinates as its argument x, they are treated as Cartesian coordi-
nates and the distances between them are assumed to be Euclidean. Otherwise (e.g., when geodesic
distances are used), distances have to be provided as the argument x and plotting coordinates have
to be supplied as argument alt.coord.

The weighting function (see weighting-functions) must have the distances as its first argument, op-
tionally an argument named boundaries giving the boundaries within which locations are regarded
as neighbours and/or an argument wpar containing any other weighting function parameters.

Default values for argument boundaries are 0 for the minimum value and NA for the maximum. For
weighting functions with an argument bounraries, The upper value NA indicates the function to
take the minimum value that allow every locations to form a single cluster following single linkage
clustering as a maximum value (obtained internally from a call to hclust.

Functions

• eigenmap(): Main function for generating an eigenmap-class object from Cartesian coordi-
nates or pairwise distances.

• eigenmap.score(): Generate scores for arbitrary locations within the scope of an existing
eigenvector map.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Borcard, D. and Legendre, P. 2002. All-scale spatial analysis of ecological data by means of prin-
cipal coordinates of neighbour matrices. Ecol. Model. 153: 51-68

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

eigenmap 11

Legendre, P. and Legendre, L. 2012. Numerical Ecology, 3rd English edition. Elsevier Science
B.V., Amsterdam, The Netherlands.

Examples

Example 1: A linear transect.
data(salmon)

A warning is issued when no boundaries are provided for a function that
requires them.
Example:
map <- eigenmap(x = salmon[,"Position"], weighting = wf.binary)
map
plot(map)

In the following examples, boundaries are provided; they are needed by the
functions.
map <- eigenmap(x = salmon[,"Position"], weighting = wf.binary,

boundaries = c(0,20))
map
plot(map)

map <- eigenmap(x = salmon[,"Position"], weighting = wf.Drayf1,
boundaries = c(0,20))

map
plot(map)

map <- eigenmap(x = salmon[,"Position"], weighting = wf.Drayf2,
boundaries = c(0,20))

map
plot(map)

map <- eigenmap(x = salmon[,"Position"], weighting = wf.Drayf3,
boundaries = c(0,20), wpar = 2)

map
plot(map)

map <- eigenmap(x = salmon[,"Position"], weighting = wf.PCNM,
boundaries = c(0,20))

map
plot(map)

map <- eigenmap(x = salmon[,"Position"], weighting = wf.sqrd)
map
plot(map)

map <- eigenmap(x = salmon[,"Position"], weighting = wf.RBF, wpar = 0.001)
map
plot(map)

Example 2: Using predictor scores

smpl <- c(4,7,10,14,34,56,61,64) # A sample to be discarded

12 eigenmap

map <- eigenmap(x = salmon[-smpl,"Position"], weighting = wf.sqrd)
scr <- eigenmap.score(

map, target = as.matrix(dist(salmon[,"Position"]))[,-smpl]
)

Scores of sampling points are the eigenvectors
scr[smpl,]

wh <- 5L # You can try with other vectors.
plot(map$U[,wh] ~ salmon[-smpl,"Position"], ylab = expression(U[5]),

xlab = "Position along transect")
points(y = scr[smpl,wh], x = salmon[smpl,"Position"], pch = 21L,

bg = "black")

map <- eigenmap(x = salmon[-smpl,"Position"], weighting = wf.binary,
boundaries = c(0,20))

scr <- eigenmap.score(
map, target = as.matrix(dist(salmon[,"Position"]))[smpl,-smpl])

Plot the 8 prediction sites along particular eigenvectors, here
eigenvector #1:
wh <- 1L # One could try the other vectors.
plot(map$U[,wh] ~ salmon[-smpl,"Position"], ylab = expression(U[1L]),

xlab = "Position along transect (m)")
points(y = scr[,wh], x = salmon[smpl,"Position"], pch=21L, bg = "black")

map <- eigenmap(x = salmon[-smpl,"Position"], weighting = wf.PCNM,
boundaries = c(0,100))

scr <- eigenmap.score(
map, target = as.matrix(dist(salmon[,"Position"]))[smpl,-smpl]

)

wh <- 1L # You can try with other vectors.
plot(map$U[,wh] ~ salmon[-smpl,"Position"], ylab = expression(U[1]),

xlab = "Position along transect (m)")
points(y = scr[,wh], x = salmon[smpl,"Position"], pch = 21L, bg = "black")

Example 3: A unevenly sampled surface.

data(mite)

Example using the principal coordinates of the square root of the
(Euclidean) distances:
map <- eigenmap(x = as.matrix(mite.geo), weighting = wf.sqrd)
map
plot(map)

Example using the radial basis functions (RBF):
map <- eigenmap(x = as.matrix(mite.geo), weighting = wf.RBF)
map
plot(map)

eigenmap-class 13

eigenmap-class Class and Methods for Spatial Eigenvector Maps

Description

Create and handle spatial eigenvector maps of a set of locations a space with an arbitrary number of
dimensions.

Usage

S3 method for class 'eigenmap'
print(x, ...)

S3 method for class 'eigenmap'
plot(x, ...)

Arguments

x an ‘eigenmap-class‘ object.

... Further parameters to be passed to other functions or methods (currently ig-
nored).

Format

‘eigenmap-class‘ objects contain:

coordinates A matrix of coordinates.

truncate The interval within which pairs of sites are considered as neighbours.

D A distance matrix.

weighting The weighting function that had been used.

wpar The weighting function parameter that had been used.

lambda A vector of the eigenvalues obtain from the computation of the eigenvector map.

U A matrix of the eigenvectors defining the eigenvector map.

Details

The ‘print‘ method provides the number of the number of orthonormal variables (i.e. basis func-
tions), the number of observations these functions are spanning, and their associated eigenvalues.

The ‘plot‘ method provides a plot of the eigenvalues and offers the possibility to plot the values of
variables for 1- or 2-dimensional sets of coordinates. plot.eigenmap opens the default graphical
device driver, i.e., X11, windows, or quartz and recurses through variable with a left mouse click
on the graphical window. A right mouse click interrupts recursing on X11 and windows (Mac OS X
users should hit Esc on the quartz graphical device driver (Mac OS X users).

14 Euclid

Functions

• print(eigenmap): Print method for eigenmap-class objects

• plot(eigenmap): Plot method for eigenmap-class objects

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Borcard, D. and Legendre, P. 2002. All-scale spatial analysis of ecological data by means of prin-
cipal coordinates of neighbour matrices. Ecol. Model. 153: 51-68

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

Legendre, P. and Legendre, L. 2012. Numerical Ecology, 3rd English edition. Elsevier Science
B.V., Amsterdam, The Netherlands.

See Also

MCA eigenmap

Euclid Calculation of the Euclidean Distance

Description

Function Euclid carries out the calculation of pairwise Euclidean distances within a set of coordi-
nates or between two sets thereof, with optional weights.

Usage

Euclid(x, y, squared = FALSE)

Arguments

x A set of coordinates in the form of a matrix or data.frame.

y An optional second set of coordinates in the same dimensions as argument x.

squared Should the squared Euclidean distances be returned (default: FALSE).

Euclid 15

Details

When only one set of coordinates is given to the function (i.e., when argument y is omitted), the
function returns the pairwise distances in the form of a ‘dist-class‘ object representing a lower-
triangle matrix. If weights are omitted, the result is identical to that produced by function dist with
argument method = "euclidean" (the function’s default).

The standard ‘R‘ function used to calculate the Euclidean distance (dist), only allows one to cal-
culate pairwise distances between the rows of a single matrix of Cartesian coordinates and return a
‘dist-class‘ object, which is a one-dimensional array meant to be interpreted as a lower-triangular
matrix. Function Euclid can also be provided two data matrices (arguments x and y) and output a
rectangular matrix of the Euclidean distances.

Value

A ‘dist-class‘ object or, whenever y is provided, a matrix with as many rows as the number of rows
in x and as many columns as the number of rows in y.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

See Also

The ‘dist-class‘ and associated methods.

Examples

A set of reference points:
x <- cbind(c(1,4,5,2,8,4), c(3,6,7,1,3,2))
dimnames(x) <- list(LETTERS[1:6], c("x", "y"))

The pairwise Euclidean distances among the reference points:
d1 <- Euclid(x)
d1

That result is the same as that obtained from function dist:
d2 <- dist(x, method = "euclidean")
all(d1 == d2)

A second set of points:
y <- cbind(c(3,5,7), c(3,6,8))
dimnames(y) <- list(LETTERS[7:9], c("x", "y"))

The distances between the points in y (rows) and x (columns):
Euclid(x, y)

16 geodesics

geodesics Calculation of Geodesic Distances

Description

Function geodesics carries out the calculation of pairwise geodesic distances within a set of coor-
dinates or between two sets thereof, using one of two calculation approaches.

Usage

geodesics(
x,
y,
method = c("haversine", "Vincenty"),
radius = 6371000,
sma = 6378137,
flat = 1/298.257223563,
maxiter = 1024L,
tol = .Machine$double.eps^0.75

)

Arguments

x A set of geographic coordinates in the form of a two-column matrix or data.frame.

y An other two-column matrix or data.frame containing an optional second set
of coordinates.

method The calculation method used to obtain the distances (default: haversine method;
see details).

radius Radius of the planetary body (when assuming a sphere; default: 6371000 m).

sma Length of the semi-major axis of the planetary body (when assuming a revolu-
tion ellipsoid; default: 6378137 m).

flat Flattening of the ellipsoid (default: 1/298.257223563).

maxiter Maximum number of iterations, whenever iterative calculation is involved (de-
fault: 1024).

tol Tolerance used when iterative calculation is involved (default: .Machine$double.eps^0.75;
a machine dependent value).

Details

When only one set of coordinates is given to the function (i.e., when argument y is omitted), the
function returns the pairwise distances in the form of a ‘dist-class‘ object representing a lower-
triangle matrix. When the second coordinate set is given, the function calculates the distances
between each coordinate of argument x and each coordinate of argument y.

Two calculation methods are implemented. The first is the haversine formula, which assume the
planetary body to be a sphere. The radius of that sphere is given to the function as its argument

geodesics 17

radius, with the default value being the mean radius of planet earth. Of the two methods imple-
mented, the haversine formula is fastest but its precision depend on how well the planetary body
match the sphericity assumption. The second method implemented is Vincenty’s inverse formula,
which assumes the the planetary body is a revolution ellipsoid, which is expected for rotating semi-
fluid such as planet earth. Argument sma, the length of the semi-major axis, corresponds to the
radius of the circle obtained when the revolution ellipsoid at the equator, whereas argument flat
correspond to the compression of the sphere, along the diameter joining the poles, to form the el-
lipsoid of revolution. Their default values corresponds to parameters for planet Earth according
to WGS84. These values, along with arguments maxiter and tol, are ignored when using the
haversine formula, whereas the value of argument radius is ignored when using Vincenty’s inverse
formula.

Vincenty’s inverse formula is more precise on planet Earth (on the order of 0.5mm) than the haver-
sine formula, but it involves more computation time and may sometimes fail to converge. This
is more likely for pairs of locations that are nearly antipodal or both (numerically) very close to
the equator. The results returned by the function when using Vincenty’s inverse formula are given
a niter attribute that gives the number of iterations that were necessary to achieve convergence.
Numbers greater than argument maxiter are indicative of failed convergence; a warning is issued
in such a circumstance.

Geodesic distance matrices are non metric.

Value

A ‘dist-class‘ object or, whenever argument y is provided, a matrix with as many rows as the
number of rows in argument x and as many columns as the number of rows in argument y.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Vincenty, T. 1975. Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of
nested equations. Survey Review XXIII (176): 88-93 doi:10.1179/sre.1975.23.176.88

Inman, J. 1835. Navigation and Nautical Astronomy: For the Use of British Seamen (3 ed.). Lon-
don, UK: W. Woodward, C. & J. Rivington

See Also

The dist-class and associated methods.

Examples

##
First example: locations spread throughout the world
##
coords <- cbind(c(43,22,9,12,-40,72,-86,-22),

c(-135,22,0,1,-45,12,27,-139))
res_hav <- geodesics(coords) ## Default: the haversine formula

18 LGDat

res_hav
res_vif <- geodesics(coords, method = "Vincenty")
res_vif
attr(res_vif,"niter") ## The numbers of iterations
res_vif-res_hav ## Absolute difference
200*(res_vif-res_hav)/(res_vif+res_hav) ## Large relative difference
##
Second example: locations nearer from one another
##
coords <- cbind(c(45.01,44.82,45.23,44.74),

c(72.03,72.34,71.89,72.45))
res_hav <- geodesics(coords)
res_vif <- geodesics(coords, method = "Vincenty")
res_vif-res_hav ## Absolute difference
200*(res_vif-res_hav)/(res_vif+res_hav) ## Relative difference are smaller
##

LGDat Legendre and Gallagher Synthetic Example

Description

A data set used as a synthetic example in paper Legendre and Gallagher (2001).

Usage

data(LGDat)

Format

A 19 rows by 10 columns data.frame.

Details

This synthetic data set is described by Legendre and Gallagher (2001) and was used to test species
abundance transformations. Its first column contains geographic locations from 1 to 19 (no par-
ticular units are specified). The five columns that follow contain abundances of five species with
abundances peaking at 7-8 at different locations (site 1, 5, 10, 15, and 19). The latter are consid-
ered "abundant species". For next four columns contains abundances of "rare species" occurring in
between the abundance species (abundances from 1 to 4).

Source

Legendre, P. & Gallagher E. D. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280 doi: 10.1007/s004420100716

LGTransforms 19

Examples

data(LGDat)
summary(LGDat)

LGTransforms Transformation for Species Abundance Data

Description

Calculates the transformed species abundances following Legendre and Gallagher.

Usage

LGTransforms(
x,
method = c("chord", "chisq", "profile", "Hellinger"),
offset = 0,
power = 1

)

Arguments

x A species abundance matrix (rows: sites, columns: species).

method The transformation method, one of "chord" (the default), "chisq", "profile", or
"Hellinger" (see details).

offset Offset value applied to all the columns of x prior to the other transformations
(default: 0, see Details).

power Exponent for the power transformation (Box-Cox) applied to all columns of
x after the offset and before the transformation specified by argument method
(default: 1, see Details).

Details

These transformations of species abundances values are useful for multivariate least squares meth-
ods for ordination methods, such as the principal component analysis, or modelling methods, such
as the multiscale codependence analysis (MCA), the canonical redundancy analysis (RDA). They al-
low one to use least squares methods, which operate on the basis of the Euclidean metric, on species
abundance data, for which the Euclidean metric have generally inadequate properties (see Legendre
& Gallagher 2001 and Legendre & Borcard 2018, in references below, for a thorough discussion on
the topic).

The power (Box Cox) transformation involves the following equation:

y’ = (y + offset)^power if power != 0

y’ = log(y + offset) if power == 0

The default values for offset (0) and power (1) correspond to applying no transformation besides
that specified by argument methods.

20 LGTransforms

Value

A matrix of the transformed species abundances.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Legendre P. & Gallagher E. D. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280 doi: 10.1007/s004420100716

Box G. E. P. & Cox D. R. 1964. An analysis of transformations. Journal of the Royal Statistical
Society Series B 26: 211-243

Legendre P. & Borcard D. 2018. Box-Cox-chord transformations for community composition data
prior to beta diversity analysis. Ecography 41: 1820-1824. doi: 0.1111/ecog.03498

Legendre, P. & Legendre, L. 2012. Numerical Ecology, Third English Edition. Elsevier B. V.
Amsterdam, The Netherlands.

Examples

data(Doubs)

Removing any species that have not been not observed:
Doubs.fish -> x
x[rowSums(x)!=0,] -> x

Transforming the abundances
LGTransforms(x,"chord") -> chord
LGTransforms(x,"chord",offset=1,power=0) -> log.chord
LGTransforms(x,"chord",power=0.25) -> pow.chord
LGTransforms(x,"chisq") -> chisq
LGTransforms(x,"profile") -> sp_pr
LGTransforms(x,"Hellinger") -> Helli

dist(chord)
dist(log.chord)
dist(pow.chord)
dist(chisq)
dist(sp_pr)
dist(Helli)

Legendre & Gallagher synthetic examples:

data(LGDat)

Diastemograms:

as.matrix(dist(LGDat[,1L])) -> geo
geo[upper.tri(geo)] -> geo

LGTransforms 21

Raw Euclidean distances
par(mfrow=c(1,1), mar=c(5,5,4,2))

as.matrix(dist(LGDat[,-1L])) -> eco
eco[upper.tri(eco)] -> eco

plot(eco~geo, data=data.frame(geo=geo, eco=eco),
xaxp=c(1,18,17), las=1, ylim=c(0,max(eco)),
xlab="True geographic distance",
ylab="Euclidean distance")

Euclidean distances on the transformed abundances:
par(mfrow=c(3,2), mar=c(3,5,4,2))

LGTransforms(LGDat[,-1L],"chord") -> chord
as.matrix(dist(chord)) -> eco
eco[upper.tri(eco)] -> eco
plot(eco~geo,data=data.frame(geo=geo,eco=eco),

xaxp=c(1,18,17),las=1,xlab="",ylab="",
main="Chord distance",ylim=c(0,max(eco)))

LGTransforms(LGDat[,-1L],"chord",offset=1,power=0) -> log.chord
as.matrix(dist(log.chord)) -> eco
eco[upper.tri(eco)] -> eco
plot(eco~geo,data=data.frame(geo=geo,eco=eco),

xaxp=c(1,18,17),las=1,xlab="",ylab="",
main="Chord distance (log(x+1))",ylim=c(0,max(eco)))

par(mar=c(4,5,3,2))

LGTransforms(LGDat[,-1L],"chord",power=0.25) -> pow.chord
as.matrix(dist(pow.chord)) -> eco
eco[upper.tri(eco)] -> eco
plot(eco~geo,data=data.frame(geo=geo,eco=eco),

xaxp=c(1,18,17),las=1,xlab="",ylab="",
main="Chord distance (power=0.25)",ylim=c(0,max(eco)))

LGTransforms(LGDat[,-1L],"chisq") -> chisq
as.matrix(dist(chisq)) -> eco
eco[upper.tri(eco)] -> eco
plot(eco~geo,data=data.frame(geo=geo,eco=eco),

xaxp=c(1,18,17),las=1,xlab="",ylab="",
main="Chi-square distance",ylim=c(0,max(eco)))

par(mar=c(5,5,2,2))

LGTransforms(LGDat[,-1L],"profile") -> sp_pr
as.matrix(dist(sp_pr)) -> eco
eco[upper.tri(eco)] -> eco
plot(eco~geo,data=data.frame(geo=geo,eco=eco),

xaxp=c(1,18,17),las=1,xlab="",ylab="",
main="Dist. between profiles",ylim=c(0,max(eco)))

22 MCA

LGTransforms(LGDat[,-1L],"Hellinger") -> Helli
as.matrix(dist(Helli)) -> eco
eco[upper.tri(eco)] -> eco
plot(eco~geo,data=data.frame(geo=geo,eco=eco),

xaxp=c(1,18,17),las=1,xlab="",ylab="",
main="Hellinger distance",ylim=c(0,max(eco)))

mtext(text="True geographic distance", side=1, line=-1.5, outer=TRUE)
mtext(text="Ecological distance", side=2, line=-1.5, outer=TRUE)

Examples from Legendre & Legendre 2012, page 329 (Figure 7.8):

matrix(c(0,0,1,4,1,0,8,1,0),3L,3L) -> LL329

D1: Euclidean distance
dist(LL329)

Chord transformation (D3: chord distance)
LGTransforms(LL329,"chord") -> tr
tr
dist(tr)

"Species profile" transformation (D18)
LGTransforms(LL329,"profile") -> tr
tr
dist(tr)

Hellinger transformation (D17: Hellinger distance)
LGTransforms(LL329,"Hellinger") -> tr
tr
dist(tr)

Chi-square transformation (D16: Chi-square distance)
LGTransforms(LL329,"chisq") -> tr
tr
dist(tr)

MCA Multiple-descriptors, Multiscale Codependence Analysis

Description

Class, Functions, and methods to perform Multiscale Codependence Analysis (MCA)

Usage

MCA(Y, X, emobj)

MCA 23

test.cdp(object, alpha = 0.05, max.step, response.tests = TRUE)

permute.cdp(object, permute, alpha = 0.05, max.step, response.tests = TRUE)

parPermute.cdp(
object,
permute,
alpha = 0.05,
max.step,
response.tests = TRUE,
nnode,
seeds,
verbose = TRUE,
...

)

Arguments

Y A numeric matrix or vector containing the response variable(s).
X A numeric matrix or vector containing the explanatory variable(s).
emobj A eigenmap-class object.
object A cdp-class object.
alpha The type I (alpha) error threshold used by the testing procedure.
max.step The maximum number of steps to perform when testing for statistical signifi-

cance.
response.tests A boolean specifying whether to test individual response variables.
permute The number of random permutations used for testing. When omitted, the num-

ber of permutations is calculated using function minpermute.
nnode The number of parallel computation nodes.
seeds Seeds for computation nodes’ random number generators when using parallel

computation during the permutation test.
verbose Whether to return user notifications.
... Parameters to be passed to function parallel::makeCluster

Details

Multiscale Codependence Analysis (MCA) allows to calculate correlation-like (i.e.codependence)
coefficients between two variables with respect to structuring variables (Moran’s eigenvector maps).
The purpose of this function is limited to parameter fitting.

Test procedures are handled through test.cdp (parametric testing) or permute.cdp (permutation
testing). Moreover, methods are provided for printing (print.cdp), displaying a summary of the
tests (summary.cdp), plotting results (plot.cdp), calculating fitted (fitted.cdp) and residuals
values (redisuals.cdp), and making predictions (predict.cdp).

It is noteworthy that the test procedure used by MCA deviates from the standard R workflow since in-
termediate testing functions (test.cdp and permute.cdp) need first to be called before any testing
be performed.

24 MCA

Function parPermute.cdp allows the user to spread the number of permutation on many computa-
tion nodes. It relies on package parallel. Omitting argument nnode lets function parallel::detectCores
specify the number of node. Similarly, omitting parameter seeds lets the function define the
seeds as a set of values drawn from a uniform random distribution between with minimum value
-.Machine$integer.max and maximum value .Machine$integer.max.

Value

A cdp-class object.

Functions

• MCA(): Main function to compute the multiscale codependence analysis

• test.cdp(): Parametric statistical testing for multiscale codependence analysis

• permute.cdp(): Permutation testing for multiscale codependence analysis.

• parPermute.cdp(): Permutation testing for multiscale codependence analysis using parallel
processing.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

Examples

Example 1: St. Marguerite River Salmon Transect
data(salmon)

Converting the data from data frames to to matrices:
Abundance <- log1p(as.matrix(salmon[,"Abundance",drop = FALSE]))
Environ <- as.matrix(salmon[,3L:5])

Creating a spatial eigenvector map:
map1 <- eigenmap(x = salmon[,"Position"], weighting = wf.binary,

boundaries = c(0,20))

Case of a single descriptor:
mca1 <- MCA(Y = Abundance, X = Environ[,"Substrate",drop = FALSE],

emobj = map1)
mca1
mca1_partest <- test.cdp(mca1)
mca1_partest
summary(mca1_partest)

MCA 25

par(mar = c(6,4,2,4))
plot(mca1_partest, las = 3, lwd=2)
mca1_pertest <- permute.cdp(mca1)
Not run:
or:
mca1_pertest <- parPermute.cdp(mca1, permute = 999999)

End(Not run)
mca1_pertest
summary(mca1_pertest)
plot(mca1_pertest, las = 3)
mca1_pertest$UpYXcb$C # Array containing the codependence coefficients

With all descriptors at once:
mca2 <- MCA(Y = log1p(as.matrix(salmon[,"Abundance",drop = FALSE])),

X = as.matrix(salmon[,3L:5]), emobj = map1)
mca2
mca2_partest <- test.cdp(mca2)
mca2_partest
summary(mca2_partest)
par(mar = c(6,4,2,4))
plot(mca2_partest, las = 3, lwd=2)
mca2_pertest <- permute.cdp(mca2)
Not run:
or:

mca2_pertest <- parPermute.cdp(mca2, permute = 999999)

End(Not run)
mca2_pertest
summary(mca2_pertest)
plot(mca2_pertest, las = 3, lwd=2)
mca2_pertest$UpYXcb$C # Array containing the codependence coefficients
mca2_pertest$UpYXcb$C[,1L,] # now turned into a matrix.

Example 2: Doubs Fish Community Transect

data(Doubs)

Sites with no fish observed are excluded:
excl <- which(rowSums(Doubs.fish) == 0)

Creating a spatial eigenvector map:
map2 <- eigenmap(x = Doubs.geo[-excl,"DFS"])
The eigenvalues are in map2$lambda, the MEM eigenvectors in matrix map2$U

MCA with multivariate response data analyzed on the basis of the Hellinger
distance:
Y <- LGTransforms(Doubs.fish[-excl,],"Hellinger")

mca3 <- MCA(Y = Y, X=Doubs.env[-excl,], emobj = map2)
mca3_pertest <- permute.cdp(mca3)
Not run:
or:

26 MCA

mca3_pertest <- parPermute.cdp(mca3, permute = 999999)

End(Not run)

mca3_pertest
summary(mca3_pertest)
par(mar = c(6,4,2,4))
plot(mca3_pertest, las = 2, lwd=2)

Array containing all the codependence coefficients:
mca3_pertest$UpYXcb$C

Display the results along the transect
spmeans <- colMeans(Y)
pca1 <- svd(Y - rep(spmeans, each=nrow(Y)))
par(mar = c(5,5,2,5) + 0.1)
plot(y = pca1$u[,1L], x = Doubs.geo[-excl,"DFS"], pch = 21L, bg = "red",

ylab = "PCA1 loadings", xlab = "Distance from river source (km)")

A regular transect of sites from 0 to 450 (km) spaced by 1 km intervals
(451 sites in total). It is used for plotting spatially-explicit
predictions.

x <- seq(0,450,1)
newdists <- matrix(NA, length(x), nrow(Doubs.geo[-excl,]))
for(i in 1L:nrow(newdists))

newdists[i,] <- abs(Doubs.geo[-excl,"DFS"] - x[i])

Calculating predictions for the regular transect under the same set of
environmental conditions from which the codependence model was built.
prd1 <- predict(mca3_pertest,

newdata = list(target = eigenmap.score(map2, newdists)))

Projection of the predicted species abundance on pca1:
Uprd1 <-

(prd1 - rep(spmeans, each = nrow(prd1))) %*%
pca1$v %*% diag(pca1$d^-1)

lines(y = Uprd1[,1L], x = x, col=2, lty = 1)

Projection of the predicted species abundance on pca2:
plot(y = pca1$u[,2L], x = Doubs.geo[-excl,"DFS"], pch = 21L, bg = "red",

ylab = "PCA2 loadings", xlab = "Distance from river source (km)")
lines(y = Uprd1[,2L], x = x, col = 2, lty = 1)

Displaying only the observed and predicted abundance for Brown Trout.
par(new = TRUE)
plot(y = Y[,"TRU"], Doubs.geo[-excl,"DFS"], pch = 21L,

bg = "green", ylab = "", xlab = "", new = FALSE, axes = FALSE)
axis(4)
lines(y = prd1[,"TRU"], x = x, col = 3)
mtext(side = 4, "sqrt(Brown trout rel. abundance)", line = 2.5)

Example 3: Borcard et al. Oribatid Mite

MCA 27

Testing the (2-dimensional) spatial codependence between the Oribatid Mite
community structure and environmental variables, while displaying the
total effects of the significant variables on the community structure
(i.e., its first principal component).

data(mite)

map3 <- eigenmap(x = mite.geo)

Y <- LGTransforms(mite.species, "Hellinger")

Organize the environmental variables
mca4 <- MCA(Y = Y, X = mite.env, emobj = map3)
mca4_partest <- test.cdp(mca4, response.tests = FALSE)
summary(mca4_partest)
plot(mca4_partest, las = 2, lwd = 2)
plot(mca4_partest, col = rainbow(1200)[1L:1000], las = 3, lwd = 4,

main = "Codependence diagram", col.signif = "white")

Making a regular point grid for plotting the spatially-explicit
predictions:
rng <- list(

x = seq(min(mite.geo[,"x"]) - 0.1, max(mite.geo[,"x"]) + 0.1, 0.05),
y = seq(min(mite.geo[,"y"]) - 0.1, max(mite.geo[,"y"]) + 0.1, 0.05))

grid <- cbind(x = rep(rng[["x"]], length(rng[["y"]])),
y = rep(rng[["y"]], each = length(rng[["x"]])))

newdists <- matrix(NA, nrow(grid), nrow(mite.geo))
for(i in 1L:nrow(grid)) {

newdists[i,] <- ((mite.geo[,"x"] - grid[i,"x"])^2 +
(mite.geo[,"y"] - grid[i,"y"])^2)^0.5

}

spmeans <- colMeans(Y)
pca2 <- svd(Y - rep(spmeans, each = nrow(Y)))

prd2 <- predict(mca4_partest,
newdata = list(target = eigenmap.score(map3, newdists)))

Uprd2 <-
(prd2 - rep(spmeans, each = nrow(prd2))) %*%
pca2$v %*% diag(pca2$d^-1)

Printing the response variable (first principal component of the mite
community structure).
prmat <- Uprd2[,1L]
dim(prmat) <- c(length(rng$x), length(rng$y))
zlim <- c(min(min(prmat), min(pca2$u[,1L])), max(max(prmat),

max(pca2$u[,1L])))
image(z = prmat, x = rng$x, y = rng$y, asp = 1, zlim = zlim,

col = rainbow(1200L)[1L:1000], ylab = "y", xlab = "x")
points(

x=mite.geo[,"x"], y=mite.geo[,"y"], pch=21L,
bg = rainbow(1200L)[round(1+(999*(pca2$u[,1L]-zlim[1L])/(zlim[2L]-zlim[1L])),0)])

28 minpermute

minpermute Number of Permutations for MCA

Description

Calculates the number of permutations suitable for testing Multiscale Codependence Analysis.

Usage

minpermute(alpha, nbtest, margin = 1, ru = 3)

Arguments

alpha The familywise type I error threshold allowable for the complete analysis.

nbtest The number of test performed (the number of eigenvectors in the ‘mem‘ object
in the case of MCA).

margin A margin allowed for the number of permutation. Default value: 1.

ru The magnitude of the round-up to apply to the number of permutations.

Details

This function calculate the number of permutations for use with permute.cdp. Argument margin
allows to apply a safe margin to the number of permutations. The minimal suitable value for this
parameter is 1. Argument ru allows one to round-up the number of permutations. A value of 0
implies no round-up, a value of 1 a round-up to the next ten, 2 a round-up to the next hundred,
and so on. Function minpermute is called internally by permute.cdp in case permute = NA. In that
case, the margin is set to 10 (margin = 10) and the outcome is rounded-up to the next thousand (ru
= 3). This function is meant for users that wish to apply their own margins and round-up factors to
calculate the number of permutations for use with permute.cdp.

Value

The minimum number of permutation to be used for permute.cdp.

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

mite 29

See Also

permute.cdp

Examples

For a 5\% threshold under 50 tests.
minpermute(alpha = 0.05, nbtest=50)

Allowing more margin (implies more computation time).
minpermute(alpha = 0.05, nbtest=50, margin=10, ru=3)

mite The Oribatid Mite Data Set

Description

Borcard et al’s oribatid mite community composition from Lac Geai, Canada.

Usage

data(mite)

Format

Contains three matrices:

mite.species The abundance of 35 morpho-species of oribatid mites (Acari).
mite.env 14 environmental variables (quantitative and binary).
mite.geo The relative coordinates of the samples.

Details

Values in mite.species are counts of individuals of each of the morpho-species obtained from 5
cm diameter cores going from the surface of the peat down to a depth of 7 cm. See Bordard &
Legendre (1994) and reference therein for details about sample treatment and species identification.

‘mite.env‘ contains two quantitative variables, namely the substratum density (g/L) and water con-
tent (percent wet mass over dry mass), in addition to 12 dummy variables. The first seven represent
the composition of the substratum: Sphagnum magellacinum (with a majority of S. rubellum), S.
rubellum, S. nemorum, (with a majority of S. augustifollium), S. rubellum + S. magellicum (in equal
proportions), lignous litter, bare peat, and interface between Sphagnum species. The next three
dummy variables represent the presence and abundance of shrubs (Kalmia polifolia, K. angusti-
folia, and Rhododentron groenlandicum): none, few, and many. The last two dummy variables
represent the microtopography of the peat: blanket (flat) or hummock (raised).

‘mite.geo‘ contains the location of the samples, in meters, with respect to the sampling grid. Point
(0,0) is the lower left end of the plot for an observer looking from the shore towards the water. The
‘x‘ coordinate is the offset along the shore (from left to right) while the ‘y‘ coordinate is the offset
from the shore while moving towards the water (See Borcard & Legendre, 1994, Fig. 1 for details
on the sampling area).

30 product-distribution

Source

Daniel Borcard, Département de sciences biologiques, Université de Montréal, Montréal, Québec,
Canada.

References

Borcard, D. & Legendre, P. 1994. Environmental control and spatial structure in ecological com-
munities: an example using Oribatid mites (Acari, Oribatei). Environ. Ecol. Stat. 1: 37-61

See Also

Borcard, D.; P. Legendre & P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological and Environmental Statistics 10: 226-245

Borcard, D.; Gillet, F. & Legendre, P. 2011. Numerical Ecology with R. Springer, New-York, NY,
USA.

Examples

data(mite)
summary(mite.species)
summary(mite.env)
summary(mite.geo)

product-distribution Frequency Distributions for MCA Parametric Testing

Description

Density and distribution functions of the phi statistic, which is the product of two Fisher-Snedecor
distributions or the tau statistic, which is the product of two Student’s t distributions.

Usage

dphi(x, nu1, nu2, tol = .Machine$double.eps^0.5)

pphi(q, nu1, nu2, lower.tail = TRUE, tol = .Machine$double.eps^0.5)

dtau(x, nu, tol = .Machine$double.eps^0.5)

ptau(q, nu, lower.tail = TRUE, tol = .Machine$double.eps^0.5)

product-distribution 31

Arguments

x, q A vector of quantile.

nu1, nu2, nu Degrees of freedom (>0, may be non-integer; Inf is allowed.

tol The tolerance used during numerical estimation.

lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Details

The density distribution of a variable z that is the product of two random variables ‘x‘ and ‘y‘ with
density distributions f(x) and g(y), respectively, is the integral f(x) * g(z/x) / abs(x) dx over the
intersection of the domains of ‘x‘ and ‘y‘.

dphi estimates density values using numerical integration (integrate) the Fisher-Scedecor df den-
sity distribution function. Following the algebra of Multiscale Codependence Analysis, f(x) has df1
= nu1 and df2 = nu1 * nu2 degrees of freedom and g(x) has ’df1 = 1’ and ’df2 = nu2’ degrees of
freedom. Hence, that product distribution has two parameters.

pphi integrates dphi in the interval [0,q] when lower.tail = TRUE (the default) and on the interval
[q,Inf] when lower.tail = FALSE.

dtau and ptau are similar to dphi and pphi, respectively. pphi integrates dphi, with f(x) and f(y)
being two Student’s t distribution with nu degrees of freedom. It is called by functions test.cdp
and permute.cdp to perform hypothesis tests for single response variables, in which case unilateral
tests can be performed.

Value

dphi and dtau return the density functions, whereas pphi and ptau return the distribution functions.

Functions

• dphi(): Probability density function for the phi statistics

• pphi(): Distribution function for the phi statistics

• dtau(): Probability density function for the tau statistics

• ptau(): Distribution function for the tau statistics

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

References

Springer, M. D. 1979. The algebra of random variables. John Wiley and Sons Inc., Hoboken, NJ,
USA.

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

32 salmon

See Also

test.cdp

Examples

Displays the phi probability distribution for five different numbers
of degrees of freedom:
x <- 10^seq(-4, 0.5, 0.05)
plot(y = dphi(x, 1, 10), x = x, type = "l", col = "black", las = 1,
ylab = "pdf", ylim = c(0, 0.5))
lines(y = dphi(x, 3, 10), x = x, col = "purple")
lines(y = dphi(x, 5, 70), x = x, col = "blue")
lines(y = dphi(x, 12, 23), x = x, col = "green")
lines(y = dphi(x, 35, 140), x = x, col = "red")

Displays the density distribution function for 10 degrees of freedom.
x <- 10^seq(-4, 0.5, 0.05)
y <- dphi(x, 5, 70)
plot(y = y, x = x, type = "l", col = "black", las = 1, ylab = "Density",

ylim = c(0, 0.5))
polygon(x = c(x[81L:91], x[length(x)], 1), y = c(y[81L:91], 0, 0),

col = "grey")
text(round(pphi(1, 5, 70, lower.tail=FALSE), 3), x = 1.75, y = 0.05)

Idem for the tau distribution:
x <- c(-(10^seq(0.5, -4, -0.05)), 10^seq(-4, 0.5, 0.05))
plot(y = dtau(x, 1), x = x, type = "l", col = "black", las = 1,

ylab = "pdf", ylim = c(0, 0.5))
lines(y = dtau(x, 2), x = x, col = "purple")
lines(y = dtau(x, 5), x = x, col="blue")
lines(y = dtau(x, 10), x = x, col="green")
lines(y = dtau(x, 100), x = x, col="red")

y <- dtau(x, 10)
plot(y = y, x = x, type = "l", col = "black", las = 1, ylab = "Density",

ylim = c(0, 0.5))
polygon(x = c(x[which(x==1):length(x)], x[length(x)],1),

y = c(y[which(x==1):length(x)], 0, 0), col = "grey")
text(round(ptau(1, 10, lower.tail = FALSE), 3), x = 1.5, y = 0.03)
polygon(x = c(-1, x[1L], x[1L:which(x==-1)]),

y = c(0, 0, y[1L:which(x==-1)]), col="grey")
text(round(ptau(-1, 10), 3), x = -1.5, y = 0.03)

salmon The St. Marguerite River Altantic Salmon Parr Transect

Description

Juvenile Atlantic salmon (parr) density in a 1520m transect of the St. Marguerite River, Québec,
Canada.

weighting-functions 33

Usage

data(salmon)

Format

A 76 rows by 5 columns data.frame.

Details

Contains (1) the 76 sampling site positions along a 1520 m river segment beginning at a location
called ‘Bardsville‘ (Lat: 48°23’01.59” N ; Long: 70°12’10.05” W), (2) the number of parr (young
salmon, ages I+ and II+) observed at the sampling sites, (3) the mean water depths (m), (4) the mean
current velocity (m/s), and (5) the mean substrate size (mm). Sampling took place on July 7, 2002,
in the 76 sites, each 20 m long. The ‘Bardsville‘ river segment is located in the upper portion of
Sainte-Marguerite River, Quebec, Canada.

Source

Daniel Boisclair, Département de sciences biologiques, Université de Montréal, Montréal, Québec,
Canada.

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

See Also

Bouchard, J. and Boisclair, D. 2008. The relative importance of local, lateral, and longitudinal
variables on the development of habitat quality models for a river. Can. J. Fish. Aquat. Sci. 65:
61-73

Examples

data(salmon)
summary(salmon)

weighting-functions Weighting Functions for Spatial Eigenvector Map

Description

A set of common distance weighting functions to calculate spatial eignevector maps using function
eigenmap.

34 weighting-functions

Usage

wf.sqrd(d)

wf.RBF(d, wpar = 1)

wf.PCNM(d, boundaries, wpar = 4)

wf.binary(d, boundaries)

wf.Drayf1(d, boundaries)

wf.Drayf2(d, boundaries, wpar = 1)

wf.Drayf3(d, boundaries, wpar = 1)

Arguments

d A triangular (‘dist-class‘) or rectangular geographic distance matrix produced
by dist, Euclid, or geodesics.

wpar Where applicable, a parameter controlling the shape of the spatial weighting
function.

boundaries Where applicable, a two-element numeric vector containing the lower and upper
threshold values used to obtain the connectivity matrix. (see details).

Details

These functions are meant primarily to be called within functions eigenmap and eigenmap.score.
In eigenmap, argument d is a lower-triangular ‘dist-class‘ object and the resulting lower-triangular
weight matrix is used in calculating the spatial eigenvector map. In eigenmap.score, d is a rect-
angular matrix of the distances between a set of arbitrary locations (rows) and reference locations
(columns; the locations for which the the spatial eigenvector map has been built and the resulting
rectangular weight matrix is used to calculate spatial eigenfunction values. These values allow one
to use the spatial information of a data set for making predictions at arbitrary values.

‘Wf.sqrd‘ (default value) consists in taking w_i,j = -0.5*d_i,j and does not involve any truncation.

‘Wf.RBF‘ consists in taking w_i,j = exp(-wpar*d_i,j^2) and does not involve any truncation, where
wpar is a non-zero real positive value (default: 1).

‘Wf.binary‘ the spatial weighting matrix is simply the connectivity matrix.

‘Wf.PCNM‘ is a_i,j = 1 - (d_i,j / (wpar*boundaries_2))^2, where wpar is a non-zero real positive
value (default: 4).

‘Wf.Drayf1‘ is a_i,j = 1 - (d_i,j / d_max) where d_max is the distance between the two most distant
locations in the set.

‘Wf.Drayf2‘ is a_i,j = 1 - (d_i,j / d_max)^wpar, where wpar is a non-zero real positive value
(default: 1).

‘Wf.Drayf3‘ is a_i,j = 1 / d_i,j^wpar, where wpar is a non-zero real positive value (default: 1).

Functions Wf.Drayf1, Wf.Drayf2, and Wf.Drayf3 were proposed by Dray et al. (2006) and func-
tion PCNM was proposed by Legendre and Legendre (2012).

weighting-functions 35

The Wf.sqrd weighting approach is equivalent to submitting the elementwise square-root of the
distance matrix to a principal coordinate analysis. It was proposed by Diniz-Filho et al. (2013)
and is equivalent, for evenly spaced transect or surfaces (square or rectangle), to using the basis
functions of type II discrete cosine basis transforms; a fact that has gone unnoticed by Diniz-Filho
et al. (2013).

The radial basis function (RBF) is a widespread kernel method involving sets of real-valued func-
tions whose values depend on the distance between any given input coordinate and a set of fixed
points (a single fixed point for each function). It is implemented using function Wf.RBF using all
the sampling points as the fixed points.

When calculating the connectivity matrix, pairs of location whose distance to one another are be-
tween the boundary values (argument bounraries) are considered as neighbours (b_i,j=1) whereas
values located below the minimum and above the maximum are considered as equivalent or distant,
respectively (b_i,j=0 in both cases).

User may implement custom weighting functions. These functions must at the very least have an
argument d, and can be given arguments boundaries and wpar. Argument wpar may be a vector
with any number of elements. They should be added to the R-code file (weighting-functions.R).
User-provided weighting functions with an argument wpar must come with a valid default value for
that parameter since eigenmap may internally call it without a formal value.

Value

A ‘dist-class‘ object when argument d is a ‘dist-class‘ object or a rectangular matrix when argument
d is a rectangular matrix, either one with the weights as its values.

Functions

• wf.sqrd(): Principal coordinates of the square-root distance matrix (Diniz-Filho et al. 2013).

• wf.RBF(): Radial basis functions with the observations as the kernels.

• wf.PCNM(): Borcard & Legendre’s (2002) principal coordinates of the neighbour matrix ap-
proach.

• wf.binary(): Dray et al. (2006) Moran’s eigenvector maps (distance-based binary connec-
tions without continuous weighting of the neighbours).

• wf.Drayf1(): Dray et al. (2006) Moran’s eigenvector maps (distance-based binary connec-
tions with continuous weighting of the neighbours: f1).

• wf.Drayf2(): Dray et al. (2006) Moran’s eigenvector maps (distance-based binary connec-
tions with continuous weighting of the neighbours: f2).

• wf.Drayf3(): Dray et al. (2006) Moran’s eigenvector maps (distance-based binary connec-
tions with continuous weighting of the neighbours: f3).

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages Maintainer: Guillaume Guenard <guil-
laume.guenard@gmail.com>

36 weighting-functions

References

Borcard, D. and Legendre, P. 2002. All-scale spatial analysis of ecological data by means of prin-
cipal coordinates of neighbour matrices. Ecol. Model. 153: 51-68

Diniz-Filho, J. A. F.; Diniz, J. V. B. P. L.; Rangel, T. F.; Soares, T. F.; de Campos Telles, M.
P.; Garcia Collevatti, R. and Bini, L. M. 2013. A new eigenfunction spatial analysis describing
population genetic structure. Genetica 141:479-489.

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

Legendre, P. and Legendre, L. 2012. Numerical Ecology, 3rd English edition. Elsevier Science
B.V., Amsterdam, The Netherlands.

Examples

locations <- c(1,2,4,7,10,14,17,21)
D <- dist(locations)
wf.sqrd(D)
wf.RBF(D, wpar = 0.1)
wf.binary(D, c(0,5))
wf.PCNM(D, c(0,5))
wf.Drayf1(D, c(0,5))
wf.Drayf2(D, c(0,5), 0.5)
wf.Drayf3(D, c(0,5), 0.5)

emap <- eigenmap(D, locations, wf.Drayf2, c(0,5), 0.5)
emap

emap <- eigenmap(D, locations, wf.Drayf3, c(0,5), 0.25)
emap

emap <- eigenmap(D, locations, wf.RBF, wpar = 0.1)
emap

Index

∗ Doubs
Doubs, 8

∗ mite
mite, 29

∗ salmon
salmon, 32

cdp-class, 2, 4, 6, 23, 24
codep-package, 2, 6
cthreshold, 3, 7

data.frame, 14, 16, 18, 33
df, 31
dist, 9, 15–17, 34, 35
Doubs, 8
dphi (product-distribution), 30
dtau (product-distribution), 30

eigenmap, 2, 9, 14, 33–35
eigenmap-class, 2, 5, 10, 13, 23
eigenmap.score, 2, 34
Euclid, 14, 34

fitted.cdp, 2
fitted.cdp (cdp-class), 4

geodesics, 16, 34

hclust, 10

integrate, 31

LGDat, 18
LGTransforms, 19

matrix, 14–17
MCA, 2, 5, 6, 14, 19, 22, 28
minpermute, 3, 23, 28, 28
mite, 29

parPermute.cdp (MCA), 22

permute.cdp, 2, 5, 28, 29, 31
permute.cdp (MCA), 22
plot.cdp, 2
plot.cdp (cdp-class), 4
plot.eigenmap, 2
plot.eigenmap (eigenmap-class), 13
pphi (product-distribution), 30
predict.cdp, 2
predict.cdp (cdp-class), 4
print.cdp, 2
print.cdp (cdp-class), 4
print.eigenmap, 2
print.eigenmap (eigenmap-class), 13
product-distribution, 2, 30
ptau (product-distribution), 30

residuals.cdp, 2
residuals.cdp (cdp-class), 4

salmon, 3, 32
summary.cdp, 2
summary.cdp (cdp-class), 4

test.cdp, 2, 5, 31, 32
test.cdp (MCA), 22

weighting-functions, 10, 33
wf.binary (weighting-functions), 33
wf.Drayf1 (weighting-functions), 33
wf.Drayf2 (weighting-functions), 33
wf.Drayf3 (weighting-functions), 33
wf.PCNM (weighting-functions), 33
wf.RBF (weighting-functions), 33
wf.sqrd (weighting-functions), 33

37

	codep-package
	cdp-class
	cthreshold
	Doubs
	eigenmap
	eigenmap-class
	Euclid
	geodesics
	LGDat
	LGTransforms
	MCA
	minpermute
	mite
	product-distribution
	salmon
	weighting-functions
	Index

